Nvidia GRID ускоряет исследования в Северо-Кавказском федеральном университете

22 мая 2017 17:36 #57037 от ICT
Северо-Кавказский федеральный университет (СКФУ) объявил об успешной интеграции технологии Nvidia GRID в научно-исследовательский и учебный процесс ведущих кафедр университета. Внедрение комплексной инфраструктуры VDI позволило сотрудникам и студентам СКФУ существенным образом сократить временные затраты на выполнение научных расчетов на фоне значительного снижения эксплуатационных расходов вычислительного комплекса СКФУ в целом. Северо-Кавказский федеральный университет – одно из крупнейших образовательных учреждений Юга России. В работе 94 кафедр Университета принимают участие 1879 преподавателей, в том числе, 277 докторов наук и 1200 кандидатов наук. В вузе одновременно обучаются более 24 тысяч человек, представляющих большинство регионов России и 30 зарубежных государств. Научно-исследовательская работа в университете осуществляется в 13 научно-исследовательских институтах и центрах. В СКФУ представлено 27 научных школ и 47 научных направлений, реализуется 192 специальности высшего профессионального образования. «Компьютерное моделирование, вычислительный эксперимент, высокопроизводительные и параллельные вычисления активно используются как инструмент научных исследований и предмет обучения на многих кафедрах нашего Университета, – отмечает Константин Эдуардович Ловцкий, к.ф.-м.н., проректор по информационным технологиям СКФУ. – Наиболее востребованы эти тематики для ученых в пяти институтах СКФУ, а также для студентов, обучающихся работе с графическими приложениями, системами автоматизированного проектирования и моделирования». Среди институтов, активно занимающихся высокопроизводительными вычислениями, Институты информационных технологий и телекоммуникаций, математики и естественных наук, нефти и газа, электроэнергетики, электроники и нанотехнологий, а также строительства, транспорта и машиностроения. Для вычислений при работе с исследовательскими и прикладными проектами, а также для учебного процесса в СКФУ широко используются такие пакеты, как Autodesk 3DS Max 2014, Autodesk Autocad 2011, MathWorks MATLAB Builder EX, MATLAB Builder JA, MicroFe 2016 Подсистема Статика ГРУНТ, MicroFe СДК 2016, NI LabView Teaching Only, PLAXIS 2D, PLAXIS 3D, Q-Chem, SCAD office КОМПЛЕКТ УН S392, SolidWorks SWR-Технология , SolidWorks SWR-Электрика. Будущие инженеры и специалисты изучают такие приложения и учебные комплекты, как «ЛИРА 10.4 Full для ВУЗов», «Лира 10.4 mini», СТАРКОН 2016, Artisan Rendering для КОМПАС-3D V14, «Компaс-3D V14. Проектирование и конструирование в машиностроении», «Компaс-3D: Расчетно-информационная система Электронный справочник Конструктора» и «Компaс-3D: Система прочностного анализа APM FEM V14 для Компaс-3D V14». При проектировании вычислительного комплекса СКФУ изначально пришлось учитывать тот факт, что постоянная потребность в высокопроизводительных вычислениях существует у множества институтов Университета, лаборатории и учебные классы которых распределены на большой территории. Кроме того, ключевым требованием к создаваемому вычислительному центру также стала необходимость учета широкого спектра разнообразных потребностей в вычислениях в рамках учебных и научных работ, осуществляемых в стенах Университета. На момент принятия решения о внедрении технологии Nvidia GRID в СКФУ уже были знакомы с преимуществами VDI. Так, с 2013 года в университете была внедрена система виртуализации серверной инфраструктуры на базе блейд-серверов, а с 2014 года в компьютерных классах были запущены пилотные зоны VDI на программной платформе VMWare. Инфраструктура VDI обеспечивает высокую безопасность и быстрое восстановление IT-систем после сбоя, управляемость, сокращение затрат на обслуживание (долгосрочный TCO), а также гибкость для пользователей и администраторов. «Варианты VDI – такие, как vSGA и vDGA, нас не устроили: в первом случае по быстродействию, во втором, по цене каждой ВМ. Таким образом, было принято решение и далее развивать серверную виртуализацию и VDI, – рассказывает Константин Эдуардович Ловцкий. – Однако с учетом полученного опыта мы обнаружили очень медленную работу программного обеспечения для САПР. Графические интерфейсы ПО работали с задержкой и низким откликом. На повестке для остро стал вопрос реализации VDI-инфраструктуры с поддержкой графических ускорителей». При выборе решения, определяющего на годы будущее высокопроизводительной вычислительной инфраструктуры Университета, в расчет принимались многие экономические и технические факторы, такие, как стоимость, гибкость решения в части выделения ресурсов отдельным виртуальным машинам (удельная стоимость на ВМ при фиксированном приросте производительности). Одним из решающих факторов при выборе подходящих технологий стала совместимость уже имеющейся в наличии серверной инфраструктуры университета с новым оборудованием. Решением, максимально соответствующим заданным критериям выбора, оказалась технология Nvidia GRID. Nvidia GRID – это технология аппаратной виртуализации графического процессора, обеспечивающая полноценную графику уровня рабочих станций на виртуальных рабочих столах. По сути, Nvidia GRID – это мощная производительная графическая станция со всеми ее преимуществами, перемещенная в облако без потерь в производительности и с полным доступом к любым приложениям с любого устройства — тонкого клиента, ноутбука или смартфона, независимо от операционной системы. Cпециалисты СКФУ выбрали для формирования новой ИТ-инфраструктуры серверы UCSC-C240-m4s / Intel Xeon E5-E2690 v4 x2 / RAM 384Gb / 400 Gb SSD / vNIC / vFC и ускорители Nvidia Tesla M60 с плотностью размещения 2 карты на каждый сервер. В качестве гипервизора используется VMWare ESXi 6.0 U2, доставку приложений на рабочий стол обеспечивает VMWare Horizon View. Рабочие столы конфигурируются из плавающего пула виртуальных машин с «нулевыми» клиентами Dell Wyse p25 на базе чипов Teradici. Решение для доставки приложений и рабочих столов выбиралось по принципу обеспечения совместимости с решением по виртуализации рабочих столов и серверной инфраструктуры, а также возможности поддержки работы с vGPU. Кроме того, что на момент начала развертывания системы виртуализации серверной инфраструктуры в университете решение VMWare было лидером на рынке, конкурентные решения других производителей с аналогичным функционалом фактически отсутствовали. Для обеспечения полноценных коммуникаций высокопроизводительных систем в формате VDI была сформирована новая сетевая инфраструктура. В качестве СХД используются системы хранения на флэш-памяти EMC VNX 7600 SSD и VNX 5300. Для пользователей обеспечена пропускная способность по каналам 100/1000Мбит/c, для серверов по каналам 10G/40G Ethernet. Технически, использование личных устройств для работы в корпоративной сети (BYOD) допустимо в зоне действия университетской беспроводной сети Wi-Fi (имеющей более 400 точек доступа). Процесс внедрения Nvidia GRID в СКФУ – от разработки концепции до пилотного запуска и внедрения – занял примерно 1 год. Внедрение инфраструктуры рабочих столов производилось поэтапно, подключение к проекту для решения научных задач производилось по запросу подразделения (кафедры или института), ведущего эти работы. Во время рабочего дня созданная инфраструктура используется в комбинированном режиме – VDI и высокопроизводительные вычисления, а в остальное время - ресурсы графических процессоров используются для решения вычислительных задач, в том числе в режиме запуска ОС с прикладной задачей непосредственно на серверах без средств виртуализации (baremetal). В настоящее время система поддерживает до 32 пользователей на карту или 16 на GPU одновременно, также используется профиль 0q для VDI. Для высокопроизводительных вычислений используется другая конфигурация, которая выбирается индивидуально, в зависимости от используемого программного обеспечения и решаемых задач (в том числе для обеспечения поддержки технологии CUDA). «На сегодняшний день доступ к платформе с поддержкой Nvidia GRID организован для 270 рабочих мест студентов, изучающих и использующих САПР или графические пакеты, и около 30 рабочих мест сотрудников университета, аспирантов, использующих графические системы или выполняющих НИР с использованием высокопроизводительных параллельных вычислений на GPU, – отмечает Константин Эдуардович Ловцкий. – Студенты и аспиранты активно используют решения VDI, отзывы главным образом положительные. Университет территориально размещен в большом количестве зданий и возможность гибкого доступа к персональным рабочим столам востребована». Ссылка на источник


  • Сообщений: 103416

  • Пол: Не указан
  • Дата рождения: Неизвестно
  • Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

    Похожие статьи

    ТемаРелевантностьДата
    «Совтелком» внедрил решение мониторинга клиентского SLA в «Северо-Кавказском банке» Сбербанка15.31Понедельник, 07 декабря 2015
    В Уральском федеральном университете открылся новый ЦОД15.23Пятница, 30 января 2015
    SAP и ТМК откроют центр инноваций в Уральском федеральном университете15.07Понедельник, 09 июля 2018
    Лаборатория «IoT Академии Samsung» открылась в Казанском федеральном университете14.91Пятница, 19 октября 2018
    Nvidia GRID позволяет повысить продуктивность учебного процесса14.91Среда, 11 февраля 2015
    NVIDIA представляет GRID 2.0 – обновление решения для виртуализации графики в облаке14.75Понедельник, 31 августа 2015
    «Гипрогазоочистка» виртуализировала графические станции на базе Nvidia GRID и VMware Horizon14.6Среда, 23 сентября 2015
    Stack Group и Nvidia представили совместное решение VDI GRID для работы c 3D-приложениями в «облаке»14.45Четверг, 17 декабря 2015
    Компании получили удаленный доступ к приложениям для работы с графикой с помощью VMware Horizon 6 и vSphere 6 и Nvidia GRID vGPU13.87Вторник, 03 февраля 2015
    Nvidia Tesla P100 ускоряет приложения глубокого обучения и высокопроизводительные вычисления13.69Понедельник, 20 июня 2016

    Мы в соц. сетях